Dependency Forest based Word Alignment

نویسندگان

  • Otsuki Hitoshi
  • Chenhui Chu
  • Toshiaki Nakazawa
  • Sadao Kurohashi
چکیده

A hierarchical word alignment model that searches for k-best partial alignments on target constituent 1-best parse trees has been shown to outperform previous models. However, relying solely on 1-best parses trees might hinder the search for good alignments because 1-best trees are not necessarily the best for word alignment tasks in practice. This paper introduces a dependency forest based word alignment model, which utilizes target dependency forests in an attempt to minimize the impact on limitations attributable to 1-best parse trees. We present how k-best alignments are constructed over target-side dependency forests. Alignment experiments on the Japanese-English language pair show a relative error reduction of 4% of the alignment score compared to a model with 1-best parse trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Word Unit Dependency Forest-based Translation Rule Extraction

Translation requires non-isomorphic transformation from the source to the target. However, non-isomorphism can be reduced by learning multi-word units (MWUs). We present a novel way of representating sentence structure based on MWUs, which are not necessarily continuous word sequences. Our proposed method builds a simpler structure of MWUs than words using words as vertices of a dependency stru...

متن کامل

It Depends on the Translation: Unsupervised Dependency Parsing via Word Alignment

We reveal a previously unnoticed connection between dependency parsing and statistical machine translation (SMT), by formulating the dependency parsing task as a problem of word alignment. Furthermore, we show that two well known models for these respective tasks (DMV and the IBM models) share common modeling assumptions. This motivates us to develop an alignment-based framework for unsupervise...

متن کامل

Multi-task Learning for Word Alignment and Dependency Parsing

Word alignment and parsing are two important components for syntax based machine translation. The inconsistent models for alignment and parsing caused problems during translation pair extraction. In this paper, we do word alignment and dependency parsing in a multi-task learning framework, in which word alignment and dependency parsing are consistent and assisted with each other. Our experiment...

متن کامل

Statistical Phrase Alignment Model Using Dependency Relation Probability

When aligning very different language pairs, the most important needs are the use of structural information and the capability of generating one-to-many or many-to-many correspondences. In this paper, we propose a novel phrase alignment method which models word or phrase dependency relations in dependency tree structures of source and target languages. The dependency relation model is a kind of...

متن کامل

Hidden Markov Tree Model for Word Alignment

We propose a novel unsupervised word alignment model based on the Hidden Markov Tree (HMT) model. Our model assumes that the alignment variables have a tree structure which is isomorphic to the target dependency tree and models the distortion probability based on the source dependency tree, thereby incorporating the syntactic structure from both sides of the parallel sentences. In English-Japan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016